
Model-Checking for Validation of a Fault Protection System

Martin S. Feather
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Dr
Pasadena CA 91109

Martin.S.Feather@Jpl.Nasa.Gov

Stephen Fickas
Department of Computer Science

University of Oregon
Eugene, OR 97403

fickas@cs.uoregon.edu

Ny-Aina Razermera-Mamy
Department of Computer Science

University of Oregon
Eugene, OR 97403

ainarazr@cs.uoregon.edu

Abstract

The Fault Protection (FP) system of a spacecraft is a
critical component for its operation. The system diagnoses
problems with the health of the spacecraft, and directs
actions to resolve those problems. It therefore warrants a
high degree of assurance as to its correctness.

In this paper, we describe the use of model checking
to help validate key requirements of such a FP system. The
particular system we deal with is that of a generic FP
engine “networked” to the rest of the spacecraft. Its
design is specified with a high degree of rigor, using state
machine diagrams to define both the FP engine, and the
spacecraft-specific responses that the engine directs.

We describe the way we have modeled the FP engine
and its operating environment so as to validate key
requirements of its operation, and the influence of the
above design characteristics on this effort.

Keywords
Verification and Validation, Analysis, Model

Checking, Fault Protection, State Machines, Message Bus,
NASA

1. Introduction

1.1. Fault Protection systems and applicability
of model checking

The Fault Protection (FP) system of a spacecraft
monitors the health of the spacecraft’s hardware and
software, and coordinates and tracks responses to faults
that it detects. It is obvious that the correct operation of the
FP system itself is critical to the successful operation of
the spacecraft.

The FP system operates concurrently with the
spacecraft’s other systems. Faults can occur at any time,
including the time during which the FP system is
responding to a previously detected fault. This
concurrency leads to a plethora of possible execution
sequences. Conventional means of assurance such as
traditional testing, code walkthrough, peer review of
design, are generally ineffective at handling such a large

space of execution possibilities. Testing can cover but a
small fraction of the space; human insight is apt to miss
certain cases.

This combination of characteristics of a FP system –
its critical nature, and the way it operates concurrently
with the rest of the spacecraft, makes it a likely candidate
for the use of model checking as a means to help validate
its correct operation. Model checking is a powerful
analysis technique that has emerged from the research
community over the last decade or so, and has been
successfully applied to analyze a variety of hardware and
software designs. Model checking has proven particularly
appropriate to validation of systems in which concurrency
plays a prominent role. Concurrency often gives rise to a
large number of possible interleavings of behaviors, hard
to test exhaustively by conventional means, yet amenable
to analysis by model checking.

On previous occasions, model checking has been
successfully applied to validation of spacecraft software.
Schneider used model checking to discover several flaws
in the checkpoint-rollback scheme of a FP system [1]. The
NASA Ames Software Engineering Group
http://ase.arc.nasa.gov/applied model checking to the DS1
spacecraft’s Remote Agent Experiment executive
component, and in ongoing work they are extending model
checking to work directly from programs written in Java
[2]. Some further NASA uses of model checking are
reported in [3].

Model checking succeeds when the space of
behaviors is finite, and not too large. It is common to have
to quell the combinatorial explosion of huge search spaces
by working with abstractions. FP already deals with an
abstraction of the system that it is protecting. Between the
FP system and the spacecraft are monitors, which abstract
from the detailed operation of the spacecraft to yield fault
symptoms. The FP system then maps these symptoms to
the faults that would explain their presence. Symptoms are
an abstraction of the detailed operation of the spacecraft –
e.g., temperature values abstracted to simply “normal” or
“overheated”. Much of this paper is concerned with the
additional abstraction, beyond that already present in the
nature of FP, that we had to perform to render model
checking feasible.

© 2001 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for
advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists,
or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.
To appear in Proceedings, 6th IEEE International Symposium on High Assurance Systems Engineering, Boca Raton,
Florida, October 23-24 2001. IEEE Computer Society, pp ???-???.



1.2. Advanced design characteristics of a
particular FP system and ramifications for
validation

This paper reports the use of model checking of a
spacecraft’s FP system. There are several advanced design
characteristics of this system that make its validation of
particular interest:
• Network interface between FP and the rest of the
spacecraft. In this spacecraft design, the major software
components of the spacecraft communicate with one
another via a shared “message bus”. The FP system is one
such component, and uses this same message bus to
receive status information from the spacecraft’s monitors
(e.g., a high-temperature warning from a temperature
sensor) and directives from ground control, and to transmit
commands to the spacecraft (e.g., command the spacecraft
to turn off an instrument). One consequence of this
networked architecture is that message traffic across the
message bus to/from the FP system may be interleaved.
The implications are even more complicated concurrent
behaviors that further motivate validation by model-
checking.
• Architecture of the FP system itself.The FP system
is decomposed into the spacecraft-specific details (the
mappings of symptoms to faults and faults to responses,
and the actual responses to run to correct faults) and a
generic “engine” that keeps track of status and directs the
running of responses. This facilitates reuse – the same
engine can be used on another spacecraft by substituting
the mappings and responses particular to that spacecraft.
This makes it particularly important to validate correct
operation of the engine, since multiple spacecraft’s FP
designers will be relying upon it.

• Formal specification of the FP system.The FP
“engine”, and the responses that the engine directs the
running of, are formally specified in a state machine
notation. The high degree of rigor of such a formal
specification serves as a good starting point for both
analysis and development. State machine notations are
complete, consistent and unambiguous, so the analysis
model we build from them, and the code developed from
them, are likely to correspond.

2. Model-checking approach to FP
validation

We chose to use the model checker SPIN

http://netlib.bell-labs.com/netlib/spin/whatispin.htmland [4],
motivated by its maturity, ease of use and good match to
the analysis of problems expressed as state-machines.

Our approach to using SPIN to validate FP
requirements is shown diagrammatically in Figure 1. The
dotted arrows indicatemanual steps in which the FP
design and the environment in which FP operates are
encoded as a Promela model (SPIN’s modeling language)
and requirements are encoded as Linear Temporal Logic
formulae (again, in the form used by SPIN). Once in the
appropriate forms, running SPIN is automatic.

Our analyses concentrated on the following two stated
requirements (extracted from the design documentation of
the spacecraft project):

• FP shall map reported symptoms to faults and
start the execution of the response.

• FP shall avoid running a response unnecessarily.
Responses are queued only on transition of the
fault from off-to-on. Responses are initiated only
if the offending fault is still on.

Of special interest to us were the advanced design

FP design

FP requirements

PROMELA

model

LTL
formulae

ÿ

SPIN

ÿ
�

satisfied

out of
memory/time

counter-
example

Figure 1: Validation of Fault Protection using SPIN

FP environment
(spacecraft &
ground control)



characteristics of this FP system, and how they would
influence our validation effort. In particular, we
anticipated the following ramifications:
• Network interface: the message bus serving as
communication medium between FP and the rest of the
spacecraft was a major factor in motivating this effort. A
previous version of the FP system had been used with
success in a spacecraft in which communication was direct
between FP and the various spacecraft components. The
introduction of the message bus lent design coherency to
internal spacecraft communication, but introduced concern
about possible new interleavings of behavior between FP
and spacecraft, and whether they would disrupt its correct
operation. Modeling of the message bus was central to our
validation.
• Architecture: the decomposition of FP into a generic
engine and spacecraft-specific data is motivated by the
desire to reuse the generic engine across multiple
spacecraft. Our effort focuses on validation of the correct
operation of this generic FP engine, whatever the
spacecraft-specific data it is fed. In some ways this
simplifies our validation task – we need not model the
specifics of the spacecraft (e.g.. its particular fault
symptoms). Conversely, we must validate the correct
operation of the generic engine regardless of these
specifics.
• Formal specification: Practitioners of formal
methods for V&V have observed that constructing the
formal model is both a non-trivial effort, and a point of
weakness. Effort is required to learn to understand the
informal design documentation, and cast it into a formal
model. Weakness stems from the worry that the
interpretation of the people doing the validation differs
from that of the people doing the implementation, with the
possibility that the validation results do not correspond to
the implementation. In this task, much of the
documentation of the FP design was available in a formal
notation – state machine diagrams. The spacecraft
designers are moving in the direction of such formal
notations in order to be able to use automatic
programming technology [5], [6]. For our purposes of
validation, we expected that the rigorous nature of this
design documentation would significantly ease our task of
constructing a formal model for validation.

3. Overall architecture of the validation
model

The overall architecture of the validation model is as a
set of Promela processes, subdivided into those
representing FP itself, and those representing the FP
environment. Since one of the concerns driving this whole
effort is the message bus architecture, we make this an
explicit part of the validation model. All communication

between these two sets of Promela processes is through
this channel.

In more detail: the connection between the FP engine
and the Monitors is asynchronous. We model this as a
Promela channel. This we have declared as a NON-zero
length channel, meaning that it acts as an asynchronous
communication mechanism. The activities of putting a
message onto the bus, and taking that message off, are
therefore not synchronized, meaning that other activities
may interleave between those two events. The encoding
does, however, rely upon the following being true of
communication via this message bus:

o Messages never get lost.
o The ordering of messages is preserved, i.e.,

messages from a sender to a receiver are received
in the order in which they are sent.

We model writing to, and reading from, this message
bus as Promela channel operations
(<channel>!<message> to push a message onto a
channel, and <channel>?<variable> to read a
message of a channel).

A subtle issue arose in modeling ofwhen the FP
engine would read messages off the channel. After
consulting with the FP designers, we decided to model
FP’s reading of messages off the message bus as a
separate process. This process removes messages to FP
one by one from the message bus channel, and place data
onto the appropriate one of FP’s internal queues. For
example, on reading a request message from ground to run
a response, FP removes that message from the message
bus channel, and puts the request onto its internal queue of
ground requests. Separating this message-reading process
from the rest of the FP engine (which directs the running
of responses, etc). means we model all interleavings due to
possible asynchrony between the FP process and its
environment.

4. Modeling the FP engine design

A major portion of our effort has been the manually
modeling of the FP engine design as a Promela program,
in order to input it to SPIN. The FP engine design was
available to us in the form of state machine diagrams,
augmented (where necessary) by further information
expressed as textual notes, example scenarios, and verbal
comments from the FP designers themselves. FP’s
requirements were expressed textually.

The modeling task strives for both intuitiveness and
efficiency:
• Intuitiveness: the model should have an intuitive
correspondence to the design. This facilitates
understanding the model, and the validation results
returned by SPIN. Also, it gives us confidence that the
model correctly captures the design, an important issue



Off On

Cleanup/MonReset Cleanup/MonReset

Notify/Fault.Activate

Clear/Fault.Deactivate

Figure 2 – Symptom Class State Machine

given that this is a manual step.
• Efficiency: the model should be efficient for SPIN to
analyze. SPIN does on-the-fly model checking. As it
explores the state space, it keeps track of the states that it
has already encountered. Thus, each state has to be
represented, e.g., in our model of the FP engine, the
messages in each of the FP queues, and the state of each
FP process are details which have to be included as part of
the state representation. The more such details, the larger
the representation has to be. The larger the representation,
the more memory is consumed by the on-the-fly
exploration of the search space. Memory use is one of the
limiting factors in this form of validation. The other is
time – the time it takes to explore a large search space –
and this too tends to grow as the complexity of the model
grows.

These considerations are hard to reconcile insofar as
the need to achieve efficiency often necessitates a less
intuitive model.

To achieve a balance between efficiency and
intuitiveness, we followed the following five major steps
(described in further detail in subsections 4.1 – 4.5). :
1. Mapping the state machine design information into

equivalent Promela constructs
2. Simplification : discarding details of the design

irrelevant to the validations.
3. Abstraction: removal of the distinction between

different conditions, thus allowing further
simplification.

4. Exclusion: restricting the model of the environment
in which the FP operates, so as to exclude implausible
behaviors of that environment.

5. Limiting : restricting the model of the environment so
as to limit the sheer number of possible behaviors.

4.1. Mapping the FP state machine diagrams
charts into a Promela model

4.1.1 Initial Promela model of the FP state machine
diagrams

Our first model of the FP engine design was intuitive,
but not particularly efficient. The FP documentation uses
separate state machine diagrams to explain the behaviors
of symptoms, faults, and engine. In our first model we
instantiated a separate Promela process for each instance
of these state machines. For example, for the symptom
state machine we defined a Promela proctype, which we
then instantiated for each symptom.

We modeled inter-state machine communication (i.e.,
events) by defining Promela channels, onto which we
would put messages corresponding to the events. Detailed
examples follow.

Figure 2 is redrawn from the FP documentation, and
shows the state machine corresponding to symptoms. The
issues in turning this into a Promela model are discussed
next.

Modeling the Symptom state machine in Promela
Feature Promela equivalent

Symptom state machine
diagram

Proctype (Promela
process declaration)

Symptom state
machines

Instances of proctype

State machine status
(which state machine is
in)

Global array, indexed by
symptom ID, whose values
are label of states (On, Off )

State machine
behavior

Infinite loop (do..od )
with one guarded clause per
state (On, Off ), and for each
clause, one guarded clause
per event (Notify , etc).
Use guards to allow only the
appropriate clause(s) to be
followed.

Inter-state machine
event communication

Promela channels

Generated event (e.g.,
Notify )

Message placed on
channel to recipient machine



Overall, this is a straightforward encoding of state
machines into Promela. In practice, we found it was
relatively easy to see the correspondence between the
Promela code fragments and each of the state machines,
and to follow the behaviors of Promela processes during
execution.

Following our initial experiments at running
validations against this model and discussions with the FP
designers, we discovered that this model exhibited various
behavioral interleavings that are ruled out in the actual FP
design. These stem from the interplay between the various
state machines – symptoms, faults and FP engine. The FP
design is specified as a set of state machines. In principle,
these state machines can be operating concurrently, but in
practice the FP design is to be implemented as a single
process in which the response to an external event is
carried through to completion.

For example, in responding to a Notify message, the
FP design runs the appropriate Symptom state machine; if
this generates an Activate message for the corresponding
fault, then that Fault state machine responds by queuing
the appropriate response on the appropriate queue. During
execution of this sequence of steps the FP engine doesnot
respond to further incoming messages (they are queued for
handling after completion of this sequence).

Our initial model was not constrained in this manner,
and so was able to exhibit many behavioral interleavings
not possible in the intended design. Once we recognized
this, we constrained our Promela model to eliminate the
unwanted behaviors, as follows: At every point where one
state machine sends an event to cause another state
machine to respond, and is to wait until that other state
machine has completed its response, we introduced
synchronization, causing the sending state machine to
await a signal back from the receiving state machine
before being allowed to proceed.

Specifically, we used Promela’s zero-length channels,
which act synchronously in this manner. In the sending
process, at the place where the event is queued, we follow
it immediately by a query of this zero-length
synchronization channel: <channel>?_ . In the
receiving process, at the place where processing is
performed upon receipt of the event, we follow it
immediately by an insertion onto the same synchronization
channel<channel>!true .

For example, the Symptom state machine generates
the Activate message for the Fault state machine to
respond to. In our Promela model, we use a zero-length
channel to synchronize interaction between these two
machines.

This additional synchronization was a relatively small
addition to the existing Promela code, and so did not
significantly impede our ability to read and understand the
Promela model. By eliminating a large number of

infeasible interleavings, it considerably reduced the overall
number of behaviors. Unfortunately, despite these savings,
our initial experiments revealed that the SPIN

representation of our model’s individual states consumed a
large amount of space. A separate Promela process for
each symptom and fault contributed to the size of the state
representation. This motivated us to radically revise our
modeling of the FP state machine diagrams, into the form
discussed in the next section.
4.1.2 Final Promela model of the FP state machine

diagrams
Our final Promela model of the interplay between the

state machines of the FP engine, Symptoms and Faults
uses just one Promela process, corresponding to the entire
FP engine. When the FP engine processes an event
incoming to a Symptom, it runs through a sequence of
actions depending on the event, the state of the Symptom,
and the state of the corresponding Fault. The relevant
aspects of this revised modeling of the state machine in
Promela are shown in the table that follows.

Feature Promela equivalent
Symptom state machine
diagram

Promela macro

Symptom state
machines

Invocations of the symptom
state machine macro

State machine status
(which state machine is in)

Global array, indexed
by symptom ID, whose
values are label of states
(On, Off ) (same as before)

State machine behavior Conditional
(if..fi ) with one
guarded clause per state
(On, Off ), and for each
clause, one guarded clause
per event (Notify , etc).
Use guards to allow only
the appropriate clause(s) to
be followed.

Inter-state machine
event communication

Promela macros,
parameterized by the event
being communicated

Generated event (e.g.,
Notify )

The sending machine’s
macro invokes the
appropriate macro of the
recipient machine

The net results of this radical re-modeling were
twofold:
• Enhanced analysis efficiency, due to the reduction in
the number of bits needed to represent individual states.
This permitted analysis of larger search spaces, since the
limiting factor was memory consumption.
• Decreased understandability, due to the abandonment



of separate processes-per-state machine in favor of nested
macros. The overall structure of the Promela code
continued to mirror the original design, so it does remains
fairly readable. However, during execution there is now
just a single process for all of FP, so it is harder to see the
flow of symptom-fault-response, especially during
scrutiny of behavioral traces.

4.2. Simplification

We judged some of the details that the FP engine
handles to be irrelevant to the validations that we sought to
perform. We therefore built a simplified Promela model in
which these details were absent.

In particular, the design handlessubresponses, which
roughly speaking allow responses to be composed from
other responses. When a running response reaches the
point of invoking a subresponse, the FP engine reacts by
pushing the running response onto a stack, and
commencing the running of the subresponse. When a
subresponse has completed, the FP engine pops off the top
of the stack the response that invoked it, and allows that
invoker to continue from where it left off. Subresponses
thus mirror procedure calls in procedural languages.

It is easy to see that if the calling of subresponses by a
response were to get too deeply nested, then the internal
storage of the FP engine (keeping track of the stack of
invoking responses) would become full. This could
happen if there were unbounded recursion in subresponses
(e.g., if a response always called itself as a subresponse),
or if the nesting was too deep, even though bounded.
Presumably there are guidelines on how to code responses
and their subresponses to exclude this kind of situation.

Our perception was that other than this concern with
invocation depth, subresponses are irrelevant with respect
to the properties we sought to validate. Our Promela
model does away with them entirely.

4.3. Abstraction

Abstraction from details is a commonly used
approach to improve the tractability of model-checking
based analysis [7], [8]. Abstraction removes the distinction
between different conditions, and so leads to a simpler
model, which is more amenable to analysis. Provided
abstraction is done wisely, results derived from analysis of
the abstracted model also apply to the fully detail of the
real world case.

In our modeling of the FP engine and its environment,
we repeatedly made use of a particular kind of abstraction
in which we make the environment more nondeterministic.
That is, where the environment uses details to constrain a
choice, in our model we allow the environment an
unconstrained choice. By this substitution of
unconstrained choice at all places where some detail is

accessed, that detail becomes irrelevant to the validations
we perform, and can be removed from the model.
Provided the properties we check of this simplified model
are “safety” properties (that is, hold of every possible
behavior of the model), we remain assured that if those
properties are true of the model, then they are true of the
original, unabstracted, design. This is intuitively obvious
because substituting unconstrained choice in the model of
the environment simply adds additional behaviors, never
removing existing ones. Therefore, if some safety property
holds true in that larger set of behaviors, it must hold true
in the subset of those behaviors corresponding to the
constrained choice.

For example, consider the FP notion of responses’
“waypoints”: The FP engine design directs the execution
of a response by sending the “Run” event to that response
(responses are specified as state machines). A response
being run by the FP engine can be at a so-called
“waypoint”, meaning that it can and will be interrupted by
an “Interrupting Response” if there is one waiting on the
queue. Conversely, a running response that is not at a
“waypoint” cannot be interrupted in this manner. The
details of when an executing response is at a waypoint is
determined by the environment of the FP engine – namely
by the executing response itself. We simplify our model at
this point. Where the engine is examining the waypoint
status of a running response to ascertain whether or not a
running response can be interrupted, we substitute
unconstrained choice between interrupting and not
interrupting. When SPIN is used to validate requirements
of this simplified model, it will explore both choices – that
the response can be interrupted, and that the response
cannot be interrupted. Thus whichever behavior the real
design would exhibit, our model includes it. Hence, if
SPIN’s exhaustive analysis shows that some requirement
holds of all of the model’s behaviors, we will be able to
deduce that the requirement holds of all the design’s
behaviors. Since this is the only place the FP Design that
refers to the waypoint status of responses, all the details of
waypoints can be eliminated from the model.

We used this form of abstraction, substitution of
unconstrained choice in the environment, to simplify our
FP engine model in the following areas:
• waypoints (discussed above)
• completion of a running response – the model
chooses how many steps a response will take to complete
from a finite range (we presume that the designers of
responses make sure they will terminate), rather than
modeling specific responses and how long they take to
execute.
• spacecraft faults – the model allows each monitor the
unconstrained choice of transitioning between its Off and
On states. In particular, we do not have a model of the
spacecraft faults that monitors observe and report.
• effects of responses on the spacecraft – we do not



model the effect of responses on the spacecraft! Since we
have no model of spacecraft faults, we have no model of
responses correcting faults.
• ground requests – our model allows the ground the
choice of requesting a response at any time.

In truth, our model does put some bounds on the
above, an issue discussed in the next section.

4.4. Excluding implausible environment
behaviors

When we began to attempt to validate requirements of
our FP engine model, we quickly found that those
requirements did not hold! This was exhibited by SPIN

running out of memory, which led us to examine
simulations of individual behaviors, and/or to insert
additional assertions to check for conditions that we
suspected were causing an explosion of possible
behaviors. A trivial example is that of ground requesting
many responses; ground requests were part of our
unconstrained model of the environment of the FP engine,
and so it was possible for ground to request responses
faster than the FP engine could complete them, leading to
our model’s queues filling up with multiple ground
requests.

In general terms, we came to the understanding that
the FP design is expected to operate in a reasonably “well-
behaved” environment, so that its internal queues do not
overflow with pending requests for responses, etc. We
believe these issues to be well-understood spacecraft
engineers, and not a significant concern. Nevertheless, our
analysis efforts did uncover these issues. There are three
classes of such “well-behavedness” conditions that our
analysis attempts uncovered:

1. Requests for responses originating from ground.
If these requests are issued more rapidly than FP
can complete the running of the requested
responses, then the internal queues of FP will
eventually become completely full. We do not
know what the FP design would do in such a
case, nor do we know whether there are
mechanisms in place to render it impossible (e.g.,
policies on when ground is allowed to request a
response).

2. Non-responsive monitor. Suppose there are two
monitors, each with their own symptom, and
those two symptoms are associated with the same
fault. Each time the first monitor reports a
problem, FP responds by running the appropriate
response, which leads to a “Reset” message being
sent out to both of those monitors. Suppose
further that the second of these monitors has
ceased to respond. Presumably the “Reset”
message to it sits somewhere in the message bus,
waiting to be delivered. Our analysis shows that it

is possible for the first monitor to repeat this
cycle arbitrarily many times, so in principle an
arbitrary number of “Reset” messages pile up
somewhere waiting for the second monitor to
accept them. Again, we do not know how the
design handles this case.

3. Flip-flopping monitor. Suppose a monitor sends a
rapid alternating series of “Notify” and “Clear”
messages (because of fluctuations of the physical
attribute it is monitoring) faster than the FP
engine can complete its processing of those
messages. Again, the net result leads to FP’s
internal queues becoming full. Again, perhaps the
actual FP design has a way to deal with full
queues. More likely, the responsibility for
excluding this rests on the designers of monitors.

From our modeling perspective, we had to adjust our
Promela model of the FP engine and its environment to
exclude these cases, so as to be able to validate the
requirements of the engine under well-behaved
circumstances.

Our first attempts to do this hinged on rationing the
number of activities that the environment could perform
between allowing the FP engine a chance to do its internal
processing. We were trying to model the relative speed of
the FP engine with respect to its environment, essentially
limiting the environment so that the FP engine would have
chance to compete all its internal processing before the
environment could make further requests for responses.
This proved difficult to get right. A possible alternative
would have been to make use of a model checker that
deals with real-time (e.g., UPPAAL -
http://www.docs.uu.se/docs/rtmv/uppaal/start.html), and encode
the relative speed of operations directly.

In the end we switched to a simple scheme in which
we established a “ration” on thetotal number of response-
inducing activities that the environment could make. For
flexibility of experimentation, we defined two such rations
– one on the total number of ground requests, the other on
the total number of Off-to-On transitions that a monitor
could make on its own (note that we did not limit a
monitor from transitioning On-to-Off).

Defining the rations as Promela constants allowed the
exploration of different combinations of ration values by
simply editing the model to change the numbers. Within
the model, counter variables keep track of the number of
ground requests and number of Off-to-On transitions.
Each such counter variable is initialized to zero, and
incremented when the corresponding activity takes place.
Promela guards formed from comparing a counter against
the corresponding ration serve as preconditions to inhibit
activities once the ration has been exhausted.

In summary, this “ration” based scheme proved to be
simple but effective for our application. FP is designed to
have to respond to faults relatively infrequently. It does



have to handle multiple faults (hence the ability to have an
interrupting response, an interrupted response, and a queue
of additional pending responses), but not a huge number of
these at once.

4.5. Limiting the space of behaviors

In principle, the actual FP system could have (say) 25
different monitors, connecting to (say) 20 different faults
and associated responses. The number of possible
combinations of their behaviors would be intractable to
analyze. Exhaustive analysis, even when taking
advantages of optimizations such as partial order reduction
theory to optimize the search [9], requires models to be
sufficiently small.

The experience of the formal methods community
suggests that for V&V of concurrency-rich systems,
exhaustive analysis of a restricted problem space is more
effective at locating glitches than examination of a
relatively small number of cases of the unrestricted
problem (conventional testing). Jackson in [10] argues that
searching in what he terms a “small scope” often finds
examples of the searched-for property, if one exists in any
scope.

The areas in which our Promela model limits the
actual FP engine and its environment are as follows:
• We work with relatively small numbers of Monitors,

Symptoms and Responses in our Promela model.
• We ration the number of potentially response-

invoking actions that the environment can generate:
o Ground requests for responses
o Monitors that transition from Off to On

These rations were discussed in the
preceding subsection.

5. Formalizing and analyzing the
requirements

SPIN will check the validity of requirements expressed
as Linear Temporal Logic (LTL) formulae. A run of SPIN

can conclude in one of three ways:
• Confirmation of the validity of the requirement in the
model (i.e., the LTL formula holds in all possible
executions of the Promela model)
• Detection of requirement violation in the model,
yielding a counter-example, in the form scenario
illustrating such a violation. The nature of the requirement
determines the possible form of the counter-example. For
example, if our requirement asserts a finite bound on the
number of messages that can be in the message queue at
any one time, a counter-example would be a scenario
leading to that bound being exceeded. Alternately, if the
requirement asserts that always eventually all monitors
will be in their Off state, then a counter-example could be

a scenario demonstrating an infinite loop in which a
monitor forever remains in an On state.
• Out of memory/time. If the Promela model is
elaborate, the run of SPIN can fail to yield any answer if all
the available RAM is used up (in which case SPIN halts),
or if the human user loses patience waiting for the result
and terminates the run. Spin can be run in an
approximation mode, which allows it to make handle
larger models but at the cost of abandoning a 100%
guarantee of the correctness of a “confirmation” style
result. Overall, we aimed to avoid reliance on this mode of
operation. As discussed earlier, this led to our reworking
our Promela model to sacrifice some of its intuitive
correspondence to the original design documentation in
favor of more tractable analysis.

As stated in section 2, our analyses concentrated on
the following two requirements:

• FP shall map reported symptoms to faults and
start the execution of the response.

• FP shall avoid running a response unnecessarily.
Responses are queued only on transition of the
fault from off to on. Responses are initiated only
if the offending fault is still on.

The requirements we were analyzing are, in truth,
slightly subtle – FP does indeed map reported symptoms
to faults, and for each such fault will eventuallyconsider
whether or not to start the execution of the corresponding
response. At that moment, FP will start execution if and
only if the fault is in the “Red” state.

We observed the intertwining between these
requirements and the FP engine design. Their
formalization necessarily is in terms of the internal
operation of the FP engine design, notably the FP engine’s
internal queues. We sought to validate these internal-
design-specific requirements, and also to formulate and
validate some more system-wide properties that would
demonstrate correct operation of the spacecraft+FP as a
whole. Our experience revealed the following:

Our attempts to validate the first of the specific
requirements (“FP shall map reported…”) revealed most
of the “well behavedness” assumptions discussed earlier in
section 4.4. What would happen during our analysis runs
was that the Promela models’s channels (representing the
various queues in the FP engine and/or the message bus)
would become full. We first realized this was occurring by
manual examination of scenario traces. Thereafter we
included assertions bounding the number of messages on
the model’s channels, so that SPIN runs would report
violations of these. We imposed limits on the behaviors
that FP’s environment could exhibit (as discussed in
section 4.5) so as to concentrate on whether or not FP
would operate correctly in “normal” conditions of
operation.

Eventually we arrived at the formulation and
validation of system-wide properties. For example, we



wanted to determine whether FP would lead to the curing
of a fault. We constrained one of the monitors to be “non
self curing” but “curable” (that is, inhibited it so that it
would transition from the On state to the Off stateonly
upon completion of FP running its symptom’s fault’s
response). We then ran an analysis in which we asked
whether that Monitor’s state would always eventually
become Off.

Specifically, we asserted the LTL formula that says
the lengths of our queues always remain within bounds,
and that the monitor’s state always eventually becomes
Off.

Our analyses showed this formula to be valid, modulo
the limitations on the environment’s activities (bounding
the number of ground response requests, and bounding the
number of monitor flip-flops between good and bad
states).

6. Conclusions

We have described use of model checking to help
validate a FP design. The advanced design characteristics
of this FP system were of especial interest to us. We found
their influence on our validation task to be as follows:
• Network interface: the message bus serving as
communication medium between FP and the rest of the
spacecraft was relatively straightforward to model, using
the “channel” concept in SPIN. The many possible
combinations of messages in transit on this bus contribute
significantly to size of the search space. Since the
interposition of the message bus was a motivating factor in
our involvement, we do not begrudge this search cost. In
our preliminary analyses, our representation of the
message bus was liable to quickly fill with messages,
either because our model of the FP environment was
producing faults at a high rate (faster than FP could handle
them), or because the FP environment was tardy in
removing messages FP had sent it. This pointed us to some
of the aspects of “well behavedness” that FP assumes of
its environment. For example, that a monitor will not
rapidly flip-flop between reporting good and bad status.
• Architecture: the decomposition of FP into a generic
engine and spacecraft-specific data caused us to focus on
validation of the FP enginewhatever the spacecraft-
specific data might be. Widespread use of
nondeterministic choice in our model of the environment
made this possible. Furthermore, not caring about the
details of that environment allowed us to simplify our
model of that environment, thus simplifying the model,
and increasing the tractability of analysis. A detailed
justification of the safety of these simplifications is
beyond the scope of this paper. Even with these
simplifications, we did have to limit analysis to relatively
small numbers of faults, symptoms and responses, in order
to remain tractable.

• Formal specification: The FP designers’ use of
formal notation (state machine diagrams) in their
documentation provided us with clear and unambiguous
descriptions of (key aspects of) its design. While they did
not tell the whole story (discussions with the FP experts
were necessary to resolve some of our confusions), overall
we felt the formal notation to have been helpful. However,
our initial approach to intuitively and directly representing
these state machine diagrams as separate Promela
processes proved to be expensive in terms of analysis
tractability. This motivated us to shift to a less direct
representation with improved model checking efficiency.
We are aware of research that automates translation from
formal specification notations into model checking
notations, for example [11] worked on automatic
translation Statemate® statecharts into Promela; [12] used
automatic translation in a UML setting. Our experience
here makes us curious as to whether these approaches
offer flexibility to select the model checking
representation.

Overall, we were able to model the FP engine design
in the form required for analysis. Our model encompassed
the combination of possibilities of:

• ground requested responses
• other monitors’ messages
• interrupted and interrupting responses
Encoding FP requirements as LTL formulae and using

SPIN to validate them on our model revealed the areas in
which the design makes assumptions on the well-
behavedness of its environment. By encoding these
assumptions as limitations on the model of FP
environment, we were then able to focus on the behavior
of FP’s core operation. These analyses give considerable
confidence as to the correctness of the FP design in the
networked setting (message bus communication) with its
spacecraft environment.

The research community continues to advance the
state of the art of model checking, by improving the
techniques themselves and the infrastructure than
surrounds their application. For example, if the
specification notation is carefully circumscribed,
opportunities exist for automatic approaches to abstraction
and simplification, e.g. Heitmeyer et al’s work in the
framework of SCR [Heitmeyer et al, 1998]. We see
another possible avenue worthy of exploration –
customizing model checking to specific domains, of which
FP is a promising candidate.

7. Acknowledgements

The research described in this paper was carried out at
the Jet Propulsion Laboratory, California Institute of
Technology, under a contract with the National
Aeronautics and Space Administration, and by the



University of Oregon, Eugene. Reference herein to any
specific commercial product, process, or service by trade
name, trademark, manufacturer, or otherwise, does not
constitute or imply its endorsement by the United States
Government or the Jet Propulsion Laboratory, California
Institute of Technology.

This task has been funded by the CSMISS Software
Engineering Technology Element, and overseen by Chi
Lin and Charles Norton. We thank them for their support
and guidance. We thank Jeff Levison, Nicolas Rouquette
and, most especially, Garth Watney for their help in
explaining FP to us, John Powell for help with SPIN, and
the referees for detailed, thoughtful comments.

8. References

[1] F. Schneider; S.M. Easterbrook; J.R. Callahan; and G.H.
Holzmann. “Validating Requirements for Fault Tolerant Systems
using Model Checking”, Proceedings, 3rd International
Conference on Requirements Engineering, 4-13, Colorado
Springs, Colorado, April 1998.

[2]. W. Visser; G. Brat; K. Havelund; and S. Park. “Model
Checking Programs”, Proceedings of the 15th IEEE
International Conference on Automated Software Engineering,
3-11, Grenoble, France, September 2000.

[3] C. Pecheur & L. Khatib, eds. Proceedingsof the 2001 AAAI
Spring Symposiumon Model Based Validation of Intelligence,
AAAI Press.

[4] G.J. Holzmann. The Model Checker SPIN. IEEE Trans. on
Software Engineering, 1997,Vol. 23, No 5, pp. 279-195.

[5] N. Rouquette & D. Dvorak. Reduced, Reusable and Reliable
Monitor Software. In International Symposium on Artificial
Intelligence Robotics and Automation in Space (ISAIRAS)
Tokyo, Japan, 1997.

[6] N.F. Rouquette; T. Neilson; and G. Chen. The 13th
Technology of Deep Space One.Proceedings of the 1999
Aerospace Conference, 477-487 vol.1, 1999.

[7]. E.M. Clarke; O. Grumberg; and D. Long. “Model checking:
and abstraction”, Proceedings Principles of Programming
Languages (POPL), 1994.

[8] C. Heitmeyer,; J. Kirby Jr; B. Labaw; M. Archer; R.
Bharadwaj. Using abstraction and model checking to detect
safety violations in requirements specifications.IEEE Trans. on
Software Engineering, Volume: 24 Issue: 11, Nov. 1998
Page(s): 927 –948.

[9] G.J. Holzmann, G. J. and D. Peled.An Improvement In
Formal Verification. 7th International Conference on Formal
Description Technique, Bern, Switzerland, 1994, pp. 177-194.

[10] D. Jackson; I. Schechter; I. Alcoa: the Alloy constraint
analyzer.. Proceedings of the 2000 International Conference on
Software Engineering, 2000. Page(s): 730 -733

[11] E. Mikk; Y. Lakhneck; and M. Siegel. 1998. Implementing
Statecharts in PROMELA/SPIN.Proceedings of the 2nd IEEE
Workshop on Industrial-Strength Formal Specification
Techniques, 90-101, Boca Raton, Florida, October 1998.

[12] P. Bose. Automated Translation of UML Models of
Architectures for Verification and Simulation Using SPIN.
Proceedings of the 14th IEEE International Conference on
Automated Software Engineering, 102-109, Cocoa Beach,
Florida, October 1999


